A Comparative Study of Performance
of AES Final Candidates Using FPGAs*

Andreas Dandalis, Viktor K. Prasanna, and Jose D. P. Rolim'
Department of Electrical Engineering-Systems
University of Southern California, Los Angeles, USA
{dandalis, prasanna, rolim}@halcyon.usc.edu
http://maarcll.usc.edu/

Abstract

In this paper we study and compare the perfor-
mance of FPGA-based implementations of the five fi-
nal AES candidates (MARS, RC6, Rijndael, Serpent,
and Twofish). FPGAs seem to match extremely well
with the operations required by the final candidates.
Among the various time-space tmplementation trade-
offs, we focused primarily on time performance. The
time performance metrics are throughput and latency.
Throughput corresponds to the amount of data pro-
cessed per time unit while latency is the time required
to adapt an algorithm to the input key. Time perfor-
mance and area requirement results are provided for all
the final AES candidates. To the best of our knowl-
edge, we are not aware of any published ertensive re-
sults for all the AES final candidates. Our FPGA im-
plementations show that superior performance can be
achieved compared with software implementations. In
particular, the latency is reduced by a factor of 20-700
while the throughput speedup is 4-20.

1 Introduction

The projected key role of AES in the 21st century
cryptography led us to implement the AES final can-
didates using Field Programmable Gate Arrays (FP-
GAs). The goal of this study is to evaluate the perfor-
mance of the AES final candidates on FPGAs and to

*This research was performed as part of the MAARCII
project. This work is supported by the DARPA Adaptive Com-
puting Systems program under contract no. DABT63-99-1-0004
monitored by Fort Huachuca.

tJ. D. P. Rolim is with the Centre Universitaire
d’Informatique, Universite de Geneve, 24 Rue General Dufour,
1211 Geneve 4, Switzerland. This work was performed while he
was visiting the University of Southern California.

make performance comparisons. In addition, we eval-
uate the suitability of reconfigurable hardware as an
alternative solution for AES implementations.

In this study, we concentrate only on performance
issues. We assume that all the considered algorithms
are secure. Time performance and area requirements
results are provided for all the final candidates. The
time performance metrics are throughput and latency.
Throughput corresponds to the amount of data pro-
cessed per time unit while latency is the time required
to adapt an algorithm to the input key (i.e. key-
setup). Besides the throughput metric, the latency
metric is the key measure for applications where a
small amount of data is processed per key and key
context switching occurs repeatedly. To the best of
our knowledge, we are not aware of any published ex-
tensive results for all the AES final candidates.

In [17], the results are based on estimates and are
focused on high-level issues that affect the time perfor-
mance. In [10], the cryptographic core of Serpent was
implemented using FPGAs. Only performance results
for the cryptographic core were shown. In addition,
n [14], the cryptographic cores of RC6 and Twofish
were implemented using their own non FPGA-based
reconfigurable architecture. Again, only performance
results for the cryptographic core were shown. No re-
sults regarding the key-setup of the algorithms were
provided in [10, 14].

FPGA technology is a growing area that has the po-
tential to provide the performance benefits of ASICs
and the flexibility of processors. This technology al-
lows application specific hardware circuits to be cre-
ated on demand to meet the computing and intercon-
nect requirements of an application. Moreover, these
hardware circuits can be dynamically modified par-
tially or completely in time and in space based on the
requirements of the operations under execution [5, 13].

Software-based AES implementations provide supe-

rior flexibility since any algorithm can be virtually ex-
ecuted on a processor. However, for data rates higher
than those found in a T1 line, software-driven solu-
tions are inadequate. In this case, ASIC-based so-
lutions can provide the required time performance.
However, the functionality of an ASIC design is re-
stricted by the designed parameters provided during
fabrication. Hence, any update to an ASIC-based
platform incurs high cost. As a result, ASIC-based
approaches lack flexibility. On the other hand, FPGA-
based solutions can offer an alternative approach that
combines flexibility, agile key switching, and high per-
formance.

Private-key cryptographic algorithms seem to fit
extremely well with the characteristics of the FP-
GAs. The fine-granularity of FPGAs matches ex-
tremely well the operations required by private-key
cryptographic algorithms such as bit-permutations,
bit-substitutions, look-up table reads, and boolean
functions. On the other hand, the constant bit-width
required alleviates accuracy-related implementation
problems and facilitates efficient designs. Moreover,
the inherent parallelism of the algorithms can be effi-
ciently exploited in FPGAs. Multiple operations can
be executed concurrently resulting in higher through-
put compared with software-based implementations.
Moreover, the key-setup circuit can run concurrently
with the cryptographic core circuit resulting in low
latency time and agile key-context switching.

In our implementations, we focus on the time per-
formance. Our goal is to exploit, for each candidate,
the inherent parallelism of the cryptographic core to
optimize performance. Moreover, we exploit the low-
level hardware features of FPGAs to enhance the per-
formance of individual processing elements. Our time
performance results are compared with the software-
based results of the “NIST’s Efficiency Testing for
Roundl AES Candidates” [1]. Finally, comparisons
are made among the implementations in terms of time
performance and area requirements.

An overview of FPGAs and FPGA-based cryptog-
raphy is given in Section 2. In Section 3, general as-
pects of our implementations are discussed. The im-
plementation results for each algorithm are described
in Section 4. In Section 5, time performance com-
parisons with software implementations are made. A
comparative analysis among the results of all the can-
didates 1s performed in Section 6. Finally, in Section
7, possible future work is described and concluding
remarks are made.

2 FPGA Overview

Processors and ASICs are the cores of the two ma-
jor computing paradigms of our days. Processors are
general purpose and can virtually execute any oper-
ation. However, their performance is limited by the
restricted interconnect, datapath, and instruction set
provided by the architecture. Conversely, ASICs are
application specific and can achieve superior perfor-
mance compared with processors. However, the func-
tionality of an ASIC design is restricted by the de-
signed parameters provided during fabrication. Any
update to an ASIC-based platform incurs high cost.
As a result, ASIC-based approaches lack flexibility.

FPGA technology is a growing area of research that
has the potential to provide the performance benefits
of ASICs and the flexibility of processors. Application
specific hardware circuits can be created on demand
to meet the computing and interconnect requirements
of an application. Moreover, these hardware circuits
can be dynamically modified partially or completely
in time and in space based on the requirements of
the operations under execution. As a result, superior
performance can be expected compared with the per-
formance of the equivalent software implementation
executed on a processor.

FPGAs were initially an offshoot of the quest for
ASIC prototyping with lower design cycle time. The
evolution of the configurable system technology led to
the development of configurable devices and architec-
tures with great computational power. As a result,
new application domains become suitable for FPGAs
beyond the initial applications of rapid prototyping
and circuit emulation. FPGA-based solutions have
shown significant speedups (compared with software
and DSP based approaches) for several application do-
mains such as signal & image processing, graph algo-
rithms, genetic algorithms, and cryptography among
others.

The basic feature underlying FPGAs is the pro-
grammable logic element which is realized by either
using anti-fuse technology or SRAM-controlled tran-
sistors. FPGAs [5, 13] have a matrix of logic cells
overlaid with a network of wires. Both the computa-
tion performed by the cells and the connections be-
tween the wires can be configured. Current devices
mainly use SRAM to control the configurations of the
cells and the wires. Loading a stream of bits onto
the SRAM on the device can modify the configura-
tions. Furthermore, current FPGAs can be reconfig-
ured very quickly, allowing their functionality to be
altered at runtime according to the requirements of
the computation.

2.1 FPGA-based Cryptography

FPGA devices are a highly promising alterna-
tive for implementing private-key cryptographic al-
gorithms. Compared with software-based implemen-
tations, FPGA implementations can achieve superior
performance. The fine-granularity of FPGAs matches
extremely well the operations required by private-key
cryptographic algorithms (e.g. bit-permutations, bit-
substitutions, look-up table reads, boolean functions).
As a result, such operations can be executed more effi-
ciently in FPGAs than in a general-purpose computer.

Furthermore, the inherent parallelism of the algo-
rithms can be efficiently exploited in FPGAs as op-
posed to the serial fashion of computing in an uni-
processor environment. At the cryptographic-round
level, multiple operations can be executed concur-
rently. On the other hand, at the block-cipher level,
certain operation modes allow concurrent processing
of multiple blocks of data. For example, in the ECB
mode of operation, multiple blocks of data can be pro-
cessed concurrently since each data block is encrypted
independently. Consequently, if p rounds are imple-
mented, a throughput speed-up of p can be achieved
compared with a “single-round” based implementa-
tion (one round is implemented and is reused repeat-
edly). On the contrary, in feedback modes of operation
(e.g. CBC, CFB), where encryption results of each
block are fed back into the encryption of the current
block [15], encryption can not be parallelized among
consecutive blocks of data. As a result, the maxi-
mum throughput that can be achieved is equal to the
throughput achieved by a “single-round” based imple-
mentation.

Besides throughput, FPGA implementations can
also achieve agile key-context switching. Key-context
switching includes the generation of the required key-
dependent data for each cryptographic round (e.g.
subkeys, key-dependent S-boxes). A cryptographic
round can commence as soon as its key-related data is
available. In the case of software implementations, the
cryptographic process can not commence before the
key-setup process for all the rounds is completed. As
a result, excessive latency is introduced making key-
context switching inefficient. On the contrary, in FP-
GAs, each cryptographic round can commence as early
as possible since the key-setup process can run concur-
rently. As a result, minimal latency can be achieved.

Security issues also make FPGA implementations
more advantageous than software-based solutions. An
encryption algorithm running on a generalized com-
puter has no physical protection [15]. Hardware cryp-
tographic devices can be securely encapsulated to pre-

vent any modification of the implemented algorithm.
In general, hardware-based solutions are the embod-
iment of choice for military and serious commercial
applications (e.g. NSA authorizes encryption only in
hardware) [15].

Finally, even if ASICs can achieve superior perfor-
mance compared with FPGAs, their flexibility is re-
stricted. Thus, the replacement of such application-
specific chips becomes very costly [11] while FPGA-
based implementations can be adapted to new algo-
rithms and standards. However, if ultimate perfor-
mance 1s essential, ASICs solutions are superior.

3 Implementation & Design Decisions

As a hardware target for the proposed implemen-
tations, we have chosen the Xilinx Virtex family of
FPGAs. Virtex is a high-capacity, high-speed perfor-
mance FPGA providing a superior system integration
feature set [19]. For mapping onto VIRTEX devices,
we used the Foundation Series v2.11 software develop-
ment tool. The configuration of the tool remained the
same for all the implementations. All the results were
based on placed-and-routed implementations that in-
cluded both the key-setup component and the crypto-
graphic core along with their control circuit.

Among the various time-space tradeoffs, we focused
primarily on time performance. Our goal was to max-
imize throughput for the cryptographic core of each
candidate algorithm. We have exploited the inherent
parallelism of each cryptographic core and the low-
level hardware features of FPGAs to enhance the per-
formance. Moreover, the latency issue was of primary
interest, that is, the cryptographic core has to com-
mence as early as possible. Based on the achieved
throughput, we designed the key-setup component to
sustain the data rate of the cryptographic core and to
achieve minimal latency. Even if an algorithm does
not support on-the-fly key generation (in the software
domain), the key setup can be executed concurrently
with the cryptographic core.

For each algorithm we implemented the encryption
block cipher for 128-bit data blocks using 128-bit keys.
A “single-round” based design was chosen for each im-
plementation. Since one round is implemented and is
reused repeatedly, the throughput results correspond
to *1t2iund, where n and t,,,nq are the the number
of required rounds and the encryption time per round
respectively. Similar performance analysis can be per-
formed for larger sizes of data blocks and keys as well
as for implementations that process multiple blocks of
data concurrently.

To implement efficient key-setup circuits, we took
advantage of the embedded memory modules (Block
SelectRAM) of the Virtex FPGAs [19]. The Vir-
tex FPGA Series provides dedicated on-chip blocks
of true dual-read/write port synchronous RAM, with
4096 memory cells each. Depending on the size of
the device, 32-132 Kbits of data can be stored us-
ing the Block SelectRAM memory modules. The key-
setup circuit utilizes these memory modules to pass
its results to the cryptographic core. As a result, the
cryptographic core can commence as soon as the key-
dependent data (e.g. subkeys, S-boxes) for the first
encryption round is available in the memory mod-
ules. Then, during each encryption round, the cryp-
tographic core reads the corresponding data from the
memory modules.

For each algorithm, we have also implemented the
key-setup circuit and the cryptographic core sepa-
rately. For all the implementations, the maximum
clock speed of the key-setup circuit was higher than
the maximum clock speed of the cryptographic core.
Based on the results of these individual implementa-
tions, we also provide latency estimates in case two
different clocks are used.

Regarding the cryptographic cores, the majority of
the required operations fit extremely well in Virtex
FPGAs. The permutations and substitutions can be
hard-wired while distributed memory can be used as
look-up tables. In addition, boolean functions, data-
dependent rotations, and addition can be mapped very
efficiently onto Virtex FPGA. Wherever a multiplica-
tion with a constant was required, constant coefficient
multipliers were utilized to enhance the performance
compared with “regular” multipliers. Regular mul-
tiplication is required only by the M ARS and RC6
block ciphers. In both cases, two 32-bit numbers are
multiplied and the lower 32-bit of the output are used
in the encryption process. We tried the multiplier-
macros provided for Virtex FPGAs but we found that
they were a performance bottleneck. Besides the ex-
cessive latency that was introduced due to the numer-
ous pipeline stages, excessive area was also required
since the full multiplier was mapped onto the FPGA.
Instead of using these macros, a multiplier that com-
putes partial results in parallel and outputs only the
required 32-bits was used. As a result, the latency was
reduced by more than 50% and the area requirements
were also reduced significantly.

4 Implementation Results

In the following, implementation results as well as
relevant performance issues specific to each algorithm
are provided. The latency results are represented both
as absolute time and as the fraction of the correspond-
ing encryption time of one 128-bit block of data. In
addition, the throughput results are represented both
as encryption rate and as encryption rate elaborated
on area. Finally, area requirements results are pro-
vided for both the key-setup and the cryptographic
core circuits. In the following, the order of present-
ing the algorithms is alphabetic. Detailed algorith-
mic information for each candidate can be found in

[6,12, 7,2, 16].
4.1 MARS

The MARS block cipher is the IBM submission to
AES [6]. The time performance and area requirements

results for our MARS implementation are shown in
Tables 1 and 2.

Table 1: MARS Time Performance

Latency Throughput

Latency time i
us _— MBits / sec

— KBits / (sec*slice)
block encryption time

1.96 3.12 203.77 29.55

Table 2: MARS Area Requirements

Area Requirements
of slices
of slices
total area
Total 6896 1.00
Key-Scheduling 2275 0.33
Cryptographic Core 4621 0.67

Key Schedule The MARS key expansion proce-
dure expands the input 128-bit key into a 1280-bit
key. First a linear-key expansion occurs following by
stirring the key-words based on an S-box. Both pro-
cesses 1nvolves simple operations performed repeat-
edly. However, the final stage of modifying the mul-

tiplication key-words involves string-matching opera-
tions that are relatively expensive functions. String-
matching is an expensive operation compared with the
rest of the operations required by M ARS. A compact
implementation of string-matching introduces high la-
tency while a high-performance implementation in-
creases the area requirements dramatically. In our
implementation, the last stage of the key-expansion
process (i.e. string-matching) was not implemented.
In spite of this, the introduced latency was still rela-
tively high (the worst among all the implementations
considered in this paper).

Cryptographic Core The cryptographic core of
MARS consists of a 16-round cryptographic layer
wrapped with two layers of 8-round “forward” and
“backward mixing” [6]. In our implementation only
one round of each layer was implemented that was
used repeatedly. In our implementation, while the en-
cryption time for the first block of data is 32 clock
cycles, the encryption time for every following block
of data 1s 16 clock cycles. We have achieved this im-
provement by increasing the utilization factor of the
processing stages (i.e. all the three processing stages
execute in parallel). As a result, high throughput was
achieved.

4.2 RC6

The RC6 block cipher 1s the AES proposal of the
RSA Laboratories and R. L. Rivest from the MIT Lab-
oratory for Computer Science [12]. The implemented
block cipher corresponds to w = 32-bit round keys,
r = 20 rounds, and b = 14-byte input key. The
time performance and area requirements results for
our RC6 implementation are shown in Tables 3 and 4.

Table 3: RC6 Time Performance

Latency Throughput

Latency time i
us _— MBits / sec

— KBits / (sec*slice)
block encryption time

0.17 0.15 112.87 42.59

Key Schedule The RC6 key scheduling expands
the input 128-bit key into 42 round keys. The key
for each round corresponds to a 32-bit word. The key

Table 4: RC6 Area Requirements

Area Requirements
of slices
of slices
total area
Total 2650 1.00
Key-Scheduling 901 0.34
Cryptographic Core 1749 0.66

scheduling is fairly simple. The round-keys are initial-
ized based on two constants. We have implemented
the initialization procedure using a look-up table since
it 1s the same for any input key. Then, the contents of
the look-up table are used to generate the round-keys
with respect to the input key. As a result, remarkably
low latency can be achieved that is equal to the 15%
of the time for encrypting a block of data.

Cryptographic Core The cryptographic core of
RC6 consists of 20 rounds. The symmetry and reg-
ularity found in the RC6 block cipher resulted in a
compact implementation. The entire data-block is
processed at the same time by using two identical cir-
cuits. The achieved throughput depended mainly on
the efficiency of the multiplier.

4.3 Rijndael

The Rijndael block cipher is the AES proposal of
J. Daemen and V. Rijmen from the Katholieke Uni-
versiteit Leuven [7]. The implemented block cipher
corresponds to Ny, = 4, Ny = 4, and N, = 10. The
time performance and the area requirements results of
our implementation are shown in Tables 5 and 6.

Table 5: Rijndael Time Performance

Latency Throughput

Latency time i
us _— MBits / sec

— KBits / (sec*slice)
block encryption time

0.07 0.20 353.00 62.22

Key Schedule The Rijndael key scheduling ex-
pands the input 128-bit key into a 1408-bit key. Sim-
ple operations are used that result in extremely low

Table 6: Rijndael Area Requirements

Area Requirements
of slices
of slices
total area
Total 5673 1.00
Key-Scheduling 1361 0.24
Cryptographic Core 4312 0.76

latency. ROM-based look-up tables are utilized to
perform the SubByte transformation. The achieved
latency 1s the lowest among all the implementations
considered in this paper.

Cryptographic Core The cryptographic core of
Rijndael consists of 10 rounds. The cryptographic
core is ideal for implementations on FPGAs. It com-
bines fine-grain parallelism with look-up table opera-
tions. The round transformation can be represented as
a look-up table resulting in extremely high speed. We
have implemented a ROM-based fully-parallel version
of the look-up table. By combining common references
to the look-up table, we have achieved a 25% savings in
ROM compared with the straightforward implementa-
tion suggested in the AES proposal [7]. The simplicity
of the operations and the inherent fine-grain paral-
lelism resulted in the highest throughput among all
the implementations.

4.4 Serpent

The Serpent block cipher is the AES proposal of
R. Anderson, E. Biham, and L. Knudsen from Tech-
nion, Cambridge University, and University of Bergen
respectively [2]. The time performance and area re-
quirements results for our Serpent implementation are
shown in Tables 7 and 8.

Table 7: Serpent Time Performance

Table 8: Serpent Area Requirements

Area Requirements
of slices
of slices
total area
Total 2550 1.00
Key-Scheduling 1300 0.51
Cryptographic Core 1250 0.49

Key Schedule The Serpent key scheduling expands
the input 128-bit key into a 4224-bit key. First, the
input key is padded to 256 bits and then it is expanded
to an intermediate key by iterative mixing of the key
data. Finally, by using look-up tables, the keys for
all the rounds are calculated. The simplicity of the re-
quired operations results in extremely low latency (the
second lowest among all the implementations consid-
ered in this paper).

Cryptographic Core The cryptographic core of
Serpent consists of 32 rounds. The round transforma-
tion is a linear transform consisting of rotations, shifts,
and XOR operations. Neither multiplication nor ad-
dition is required. As a result, the highest clock speed
and the most compact implementation are achieved
among all the implementations. Furthermore, the Ser-
pent implementation has the highest area utilization
factor (i.e. throughput per area unit).

4.5 Twofish

The Twofish block cipher is the AES proposal of
the Counterpane Systems, Hi/fn, Inc., and D. Wagner
from the University of California Berkeley [16]. The
time performance and area requirements results of our
implementation are shown in Tables 9 and 10.

Table 9: Twofish Time Performance

Latency Throughput

Latency time i
us _— MBits / sec

— KBits / (sec*slice)
block encryption time

Latency Throughput

Latency time i
us _— MBits / sec

— KBits / (sec*slice)
block encryption time

0.08 0.09 148.95 66.20

0.18 0.25 173.06 18.48

Table 10: Twofish Area Requirements

Area Requirements

of slices
of slices
total area
Total 9363 1.00
Key-Scheduling 6554 0.70
Cryptographic Core 2809 0.30

Key Schedule The Twofish key scheduling expands
the input 128-bit key into a 1280-bit key. Moreover,
it generates the key-dependent S-boxes used in the
cryptographic core. Four 128-bit S-boxes are gener-
ated. Since our goal is to minimize latency, we have
implemented a parallel version of the key scheduling
consisting of 24 ¢g/q; permutation boxes and 2 M DS
matrices [16]. Moreover, the RS matrix was imple-
mented for the S-box generation. The matrices are
used for “constant matrix”-to-matrix multiplication
over GF(2%). The best known implementation of a
constant coefficient multiplier in FPGAs is by using a
look-up table. As a result, low latency was achieved
but excessive area was required. The area require-
ments represent the 70% of the total area. However,
by implementing a more compact design (e.g. reusing
processing elements), increases the latency.

Cryptographic Core The cryptographic core of
Twofish consists of 16 rounds. The structure of the
round transformation is similar to the structure of the
key-expansion circuit. The only major difference is
the S-boxes that the cryptographic core uses.

4.6 Latency Improvements

For each algorithm, we have also implemented the
key-setup circuit and the cryptographic core sepa-
rately. For each algorithm, the maximum clock speed
of the key-setup circuit was higher than the maximum
clock speed of the cryptographic core. Thus, by clock-
ing each circuit at its maximum clock speed, improve-
ment in latency can be achieved. No additional syn-
chronization hardware is required since we can config-
ure the read/write ports of the Block SelectRAMs hav-
ing different clock speeds. In Table 11, based on the
results of these individual implementations, we pro-
vide the potential latency time improvement by using
two different clocks.

Clearly, the RC6 block cipher can achieve the best
latency time improvement by clocking the key-setup

Table 11: Latency Time Improvement by using 2
clocks

Latency time (2-clocks)

Latency time (1-clock)

HS Latency time (2-clocks)
MARS 1.45 1.35
RC6 0.06 2.96
Rijndael 0.05 1.43
Serpent 0.08 1.00
Twofish 0.16 1.15

and the cryptographic core circuits at their maximum
clock speeds. For the MARS block cipher, the re-
sults shown are based on an implementation that does
not include the circuit for modifying the multiplication
key-words.

5 Comparison with Software Imple-
mentations

Our performance results are compared with the
software-based results of the “NIST’s Efficiency Test-
ing for Roundl AES Candidates” [1]. The reference
platform for the NIST’s efficiency testing was a Pen-
tium Pro with 64 MB RAM running at 200 MHz. As
noted in the corresponding report, NIST used only
the optimized code provided by the submitters of the
candidate algorithms.

In Table 12, the latency results of our implemen-
tations and those of the software implementations are
shown. The results are represented both as absolute
time and as a fraction of the corresponding encryp-
tion time of one 128-bits block of data. Clearly, the
FPGA implementations achieve significant reduction
in the key-setup time (by a factor of 20-700). On the
contrary, the key-setup time of the software imple-
mentations is equal to the time for encrypting 3-13
blocks of data. In FPGAs, each cryptographic round
can commence as early as possible since the key-setup
process can run concurrently with the cryptographic
core. In the case of software implementations, the
cryptographic core can not commence before the key-
setup process for all the rounds is completed. Thus,
while FPGA implementations favor agile key-context
switching, the software implementations require rel-
atively long time for key-context switching. The la-
tency metric 1s the key performance measure for ap-
plications where small amount of data i1s processed
per key and key context switching occurs repeatedly.
For example, in the case that a block cipher is used

Table 12: Latency comparisons with NIST Efficiency
Testing results [1]

AES . Latency
Algorithm atency (us) block encryption time

Software Our Software Our

MARS 38.11 1.96 7.91 3.12
RC6 25.07 0.17 5.93 0.15
Rijndael 33.93 0.07 8.39 0.20
Serpent 56.99 0.08 3.33 0.09
Twofish 63.99 0.18 13.15 0.25

to perform a hash function, the input key changes for
every other block of data [17]. In addition, the latency
metric is critical for IPSec since the input key changes
frequently depending on the lifetime of the established
security association.

In Table 13, encryption throughput results are
shown and comparisons with the software implemen-
tations are made. The throughput improvements are
4-20 times compared with the software-based results.
While the known software implementations do not
achieve processing rates higher than 30 Mbits/sec,
our FPGA implementations achieve processing rates
higher than 100 Mbits/sec. For one reason, soft-
ware 1mplementations can not exploit the inherent
parallelism of a cryptographic round. For another,
the operations required by each cryptographic round
can be executed more efficiently in FPGAs than in
a general-purpose computer. The throughput speed-
up can be further improved for implementations that
process multiple blocks of data (see Section 3).

Table 13: Throughput comparisons with NIST Effi-
ciency Testing results [1]

AES Throughput ~

Algorithm (MBits/sec) Speed-up
Software Our

MARS 26.56 203.77 7.67
RC6 30.29 112.87 3.72
Rijndael 31.64 353.00 11.15
Serpent 7.48 148.95 19.91
Twofish 26.31 173.06 6.58

By using a superior platform configuration than the
reference platform of NIST efficiency testing, higher
throughput can be achieved for the software imple-
mentations. However, even in this case, the speed-up
of the FPGA implementations would be remarkable.
On the other hand, the latency results would not be

affected since the fraction over the corresponding en-
cryption time of one block of data would be the same.

6 FPGA Implementations
isons

Compar-

In Table 14, latency comparisons are made among
the FPGA implementations. The comparisons are
made in terms of absolute time and the ratio of the la-
tency time to the time required to encrypt one block
of data. The latter metric represents the capability
of agile key-context switching with respect to the en-
cryption rate.

Table 14: Latency comparisons of the FPGA imple-
mentations

latency time latency time
Hsec block encryption time

MARS

,,,,,,,,,,,,,,,

. !
02 Rijndael

0.15

0.1

0.05

Clearly, Rijndael and Serpent achieve the lowest
latency times while the latency times for RC6 and
Twofish are higher by a factor of 2.5. As we have men-
tioned in Section 4, the latency introduced by MARS
is the highest. All the algorithms (except MARS)
achieve latency time that is equal to the 7-25 % of
the time for encrypting a block of data.

In Table 15, throughput comparisons are made
among the FPGA implementations. The comparisons
are made in terms of the encryption rate and the ratio
of the encryption rate over the area requirements. The
latter metric reveals the hardware utilization efficiency
of each implementation.

Rijndael achieves the highest encryption rate due
to the matching of its algorithmic characteristics with

Table 15: Throughput comparisons of the FPGA im-
plementations

Throughput
Mbits / sec

Throughput / Area
Kbits / (sec * slice)

400

Serpent

Twofish

the hardware characteristics of FPGAs. In addition,
the encryption rate of Rijndael is higher than the
ones achieved by the other algorithms by a factor of
1.7 — 3.12. Moreover, Rijndael also achieves very effi-
cient hardware utilization. The best hardware utiliza-
tion is achieved by Serpent followed closely by Rijn-
dael. The latter metric combines , for each algorithm,
the computational demands in terms of an FPGA im-
plementation with the inherent parallelism of the cryp-
tographic round.

Finally, in Table 16, area comparisons are made
among the FPGA implementations. The comparisons
are made in terms of the total area as well as the
area required by each of the key-setup and the crypto-
graphic core circuits. Serpent and RC6 have the most
compact implementations. Serpent also has the most
compact cryptographic core circuit while RC6 has the
most compact key-setup circuit. For the MARS block
cipher, the result shown is based on an implementa-
tion that does not include the circuit for modifying
the multiplication key-words [6].

7 Conclusions

In this paper we have provided precise time per-
formance and area requirements results for the imple-
mentations of the five final AES candidates (MARS,
RC6, Rijndael, Serpent, and Twofish) using FPGAs.
To the best of our knowledge, we are not aware of any
published extensive results for all the AES final can-
didates. Our implementations show that, compared
with software implementations (NIST Efficiency Test-

Table 16: Area comparisons of the FPGA implemen-
tations

Area Requirements
of Virtex slices

Twofish

Cryptographic Core

9000
Key-Scheduling

80001

70001 MARS

6000~ Rijndael
5000
4000~
3000

Serpent

2000

1000

ing [1]), superior performance can be achieved. In par-
ticular, the latency is reduced by a factor of 20-700
while the throughput speedup 1s 4-20. In addition,
the key-setup process can be performed in parallel
with the encryption process regardless the capability
of the software implementation to support on-the-fly
key scheduling. Based on the time performance re-
sults, the Rijndael implementation achieves the high-
est encryption rate and the lowest latency time due
to the ideal matching of its algorithmic characteristics
with the characteristics of FPGAs.

The work reported here is part of the USC
MAARCII project (http://maarcIl.usc.edu). This
project is developing novel mapping techniques to ex-
ploit dynamic reconfiguration and facilitate run-time
mapping using configurable computing devices and ar-
chitectures. The goal i1s to alleviate the long map-
ping time required by conventional CAD tools. Com-
putational models and algorithmic techniques based
on these models are being developed to exploit self-
reconfiguration using FPGAs. Moreover, a domain-
specific mapping approach is being developed to sup-
port instance-dependent mapping. Finally, the idea of
“active” libraries 1s exploited to develop a framework
for automatic dynamic reconfiguration [3, 4, 8, 9, 18].

References

[1] Advanced Encryption Standard,
http://www.nist.gov/aes/

[2] R. Anderson, E. Biham, and L. Knudsen, “Ser-
pent: A Proposal for the Advanced Encryption
Standard”, AES Proposal, June 1998.

[3]

[6]

[7]

(8]

[10]

K. Bondalapati and V. K. Prasanna, “Dynamic
Precision Management for Loop Computations
on Reconfigurable Architectures”, TEEE Sym-
posium on FPGAs for Custom Computing Ma-
chines, April 1999.

S. Choi, “Active Library for Configurable Sys-
tems”, PhD Qualification Exam Report, Univer-
sity of Southern California, February 2000.

S. Brown and J. Rose, “FPGA and CPLD Ar-
chitectures: A Tutorial”, IEEE Design & Test of
Computers, Summer 1996.

C. Burwick et al., “MARS - a candidate cipher
for AES” AES Proposal, August 1999.

J. Daemen, V. Rijmen, “The Rijndael Block Ci-
pher”, AES Proposal, September 1999.

A. Dandalis, “Dynamic Logic Synthesis for Re-
configurable Devices”, PhD Thesis, University of
Southern California. Under Preparation.

A. Dandalis, A. Mei, and V. K. Prasanna, “Do-
main Specific Mapping for Solving Graph Prob-
lems on Reconfigurable Devices”, Reconfigurable

Architectures Workshop, April 1999.

A. J. Elbirt, C. Paar, “An FPGA Implementation
and Performance Evaluation of the Serpent Block
Cipher”, Eighth ACM International Symposium
on Field-Programmable Gate Arrays, February
2000.

D. Fowler, “Virtual Private Networks: Making
the Right Connection”, Morgan Kaufmann Pub-
lishers, Inc., San Francisco, California, 1999.

R. L. Rivest, M. J. B. Robshaw, R. Sidney, and
Y. L. Yin, “The RC67Y Block Cipher”, AES Pro-
posal, June 1998.

J. Rose, A. El Gamal, and A. Sangiovanni-
Vincentelli, “Architecture of Field Programmable
Gate Arrays”, Proceedings of the TEEE, July
1993.

R. R. Taylor, S. C. Goldstein, “A High-
Performance Flexible Architecture for Cryptogra-
phy”, Workshop on Cryptographic Hardware and
Embedded Systems, August 1999.

B. Schneier, “Applied Cryptography”, John Wil-
ley & Sons, Inc., 2nd edition, 1996.

[16]

[19]

B. Schneier, J. Kelsey, D. Whitingz, D. Wagnerx,
and C. Hall, “Twofish: A 128-Bit Block Cipher”,
AES Proposal, June 1998.

B. Schneier et al., “Performance Comparison of
the AES Submissions”, Second AES Candidate
Conference, April 1999.

R. P. Sidhu, A. Mei, and V. K. Prasanna, “Ge-
netic Programming using Self-Reconfigurable FP-
GAs”, International Workshop on Field Pro-
grammable Logic and Applications, September
1999.

Virtex Series FPGAs,

http://www xilinx.com/products/virtex.htm

